SuccessSetu
๐Ÿ“ Co-ordinate Geometry (เคจเคฟเคฐเฅเคฆเฅ‡เคถเคพเค‚เค• เคœเฅเคฏเคพเคฎเคฟเคคเคฟ)

๐Ÿ“˜ Quadrants

Plane is divided into four quadrants.

I (+,+) | II (-,+) | III (-,-) | IV (+,-)
Origin O = (0,0)

๐Ÿ“˜ Coordinates of Point

Any point is represented as:

P = (x , y)
x โ†’ Abscissa, y โ†’ Ordinate

๐Ÿ“˜ Equation of Axes

X-axis โ†’ y = 0
Y-axis โ†’ x = 0

๐Ÿ“˜ Polar Coordinates

Point represented using distance & angle.

P = (r cosฮธ , r sinฮธ)

๐Ÿ“˜ Mid Point Formula

M = ( (xโ‚+xโ‚‚)/2 , (yโ‚+yโ‚‚)/2 )

๐Ÿ“˜ Distance Formula

โˆš[(xโ‚‚-xโ‚)ยฒ + (yโ‚‚-yโ‚)ยฒ]

๐Ÿ“˜ Section Formula (Internal)

P = ( (mโ‚xโ‚‚+mโ‚‚xโ‚)/(mโ‚+mโ‚‚) , (mโ‚yโ‚‚+mโ‚‚yโ‚)/(mโ‚+mโ‚‚) )

๐Ÿ“˜ Trigonometric Form

sinฮธ = y/r
cosฮธ = x/r
tanฮธ = y/x

โœ๏ธ Practice 1

Find midpoint of (2,4) & (6,8)

Use midpoint formula

โœ๏ธ Practice 2

Find distance between (1,2) & (4,6)

Apply distance formula
๐Ÿ“ Slope & Straight Line | Coordinate Geometry

๐Ÿ“˜ External Division

External division of line segment.

P = ( (mโ‚xโ‚‚ โˆ’ mโ‚‚xโ‚)/(mโ‚ โˆ’ mโ‚‚) , (mโ‚yโ‚‚ โˆ’ mโ‚‚yโ‚)/(mโ‚ โˆ’ mโ‚‚) )

๐Ÿ“˜ Slope of Line

Slope measures steepness of line.

m = tanฮธ = (yโ‚‚ โˆ’ yโ‚)/(xโ‚‚ โˆ’ xโ‚)

๐Ÿ“˜ Standard Equation

ax + by + c = 0

Slope = โˆ’a/b

๐Ÿ“˜ Point Form

y โˆ’ yโ‚ = m(x โˆ’ xโ‚)

๐Ÿ“˜ Slope Intercept Form

y = mx + c

๐Ÿ“˜ Parallel Lines

If two lines are parallel:

mโ‚ = mโ‚‚

๐Ÿ“˜ Perpendicular Lines

If two lines are perpendicular:

mโ‚ ร— mโ‚‚ = โˆ’1

๐Ÿ“˜ Compare Slopes

m = โˆ’a/b

From ax + by + c = 0

๐Ÿ“˜ Angle Between Lines

tanฮธ = |(mโ‚ โˆ’ mโ‚‚)/(1 + mโ‚mโ‚‚)|

โœ๏ธ Practice 1

Find slope of line joining (2,3) & (6,7).

Use slope formula

โœ๏ธ Practice 2

Check if lines are parallel.

Compare slopes
Exam Point Logo
๐Ÿ“ Coordinate Geometry โ€“ Line Concepts

๐Ÿ“˜ Intercept Form

Intercept at x-axis = a
Intercept at y-axis = b

x/a + y/b = 1
Line cuts x-axis at (a,0) and y-axis at (0,b)

๐Ÿ“˜ Parallel Lines

Condition for parallel lines:

mโ‚ = mโ‚‚

๐Ÿ“˜ Perpendicular Lines

Condition for perpendicular lines:

mโ‚ ร— mโ‚‚ = โˆ’1

๐Ÿ“˜ Coincident Lines

Infinite solutions when:

aโ‚/aโ‚‚ = bโ‚/bโ‚‚ = cโ‚/cโ‚‚

๐Ÿ“˜ Concurrent Lines

Lines passing through one point.

All lines meet at same point

๐Ÿ“˜ Distance Between Axes

Intercept length:

โˆš(aยฒ + bยฒ)

๐Ÿ“˜ Angle Between Two Lines

tanฮธ = |(mโ‚ โˆ’ mโ‚‚)/(1 + mโ‚mโ‚‚)|

๐Ÿ“˜ Distance From Point

Distance of point from line:

|axโ‚ + byโ‚ + c| / โˆš(aยฒ + bยฒ)

โœ๏ธ Practice 1

Find intercept form of line: 2x + 3y = 6

Convert into x/a + y/b = 1

โœ๏ธ Practice 2

Check if 2x+3y=4 and 4x+6y=8 are parallel.

Compare slopes
Exam Point Logo
๐Ÿ“ Coordinate Geometry โ€“ Reflection, Circle & Distance

๐Ÿ“˜ Distance Between Parallel Lines

For lines:

ax + by + cโ‚ = 0
ax + by + cโ‚‚ = 0
Distance = |cโ‚ โˆ’ cโ‚‚| / โˆš(aยฒ + bยฒ)

๐Ÿ“˜ Reflection (Origin)

Reflection about origin:

(x, y) โ†’ (โˆ’x, โˆ’y)

๐Ÿ“˜ Reflection on X-Axis

(x, y) โ†’ (x, โˆ’y)

๐Ÿ“˜ Reflection on Y-Axis

(x, y) โ†’ (โˆ’x, y)

๐Ÿ“˜ Reflection on y = x

(x, y) โ†’ (y, x)

๐Ÿ“˜ Reflection on y = โˆ’x

(x, y) โ†’ (โˆ’y, โˆ’x)

๐Ÿ“˜ Centroid

G = (xโ‚+xโ‚‚+xโ‚ƒ)/3 , (yโ‚+yโ‚‚+yโ‚ƒ)/3

๐Ÿ“˜ Incentre

I = (axโ‚+bxโ‚‚+cxโ‚ƒ)/(a+b+c) , (ayโ‚+byโ‚‚+cyโ‚ƒ)/(a+b+c)

๐Ÿ“˜ Equation of Circle

(x โˆ’ a)ยฒ + (y โˆ’ b)ยฒ = rยฒ

๐Ÿ“˜ Circle at Origin

xยฒ + yยฒ = rยฒ

๐Ÿ“˜ Area of |x| + |y| = a

Area = 2aยฒ

โœ๏ธ Practice

Find image of (3, โˆ’5) in y = โˆ’x

Swap + change sign
๐Ÿ“ Coordinate Geometry โ€“ Area & Intersection

๐Ÿ“˜ Equation of Y-Axis

x = 0

Y-axis par har point ka x-coordinate zero hota hai.

๐Ÿ“˜ Line Parallel to Y-Axis

x = ยฑ a

Y-axis ke parallel sabhi lines vertical hoti hain.

๐Ÿ“˜ Graph Representation

x = a โ†’ Right side line
x = โˆ’a โ†’ Left side line

๐Ÿ“˜ Point of Intersection

For two lines:

aโ‚x + bโ‚y + cโ‚ = 0
aโ‚‚x + bโ‚‚y + cโ‚‚ = 0
x = (bโ‚cโ‚‚ โˆ’ bโ‚‚cโ‚)/(aโ‚bโ‚‚ โˆ’ aโ‚‚bโ‚)
y = (aโ‚‚cโ‚ โˆ’ aโ‚cโ‚‚)/(aโ‚bโ‚‚ โˆ’ aโ‚‚bโ‚)

โœ๏ธ Practice

Find intersection of:

2x + y โˆ’ 5 = 0
x โˆ’ y + 1 = 0

๐Ÿ“˜ Area of Triangle

For vertices (xโ‚,yโ‚),(xโ‚‚,yโ‚‚),(xโ‚ƒ,yโ‚ƒ)

Area = ยฝ | xโ‚(yโ‚‚โˆ’yโ‚ƒ)+xโ‚‚(yโ‚ƒโˆ’yโ‚)+xโ‚ƒ(yโ‚โˆ’yโ‚‚) |

๐Ÿ“˜ Special Case

If area = 0 โ†’ Points are collinear

๐Ÿ“˜ Important Tip

Always take absolute value (|)

๐Ÿ“˜ Triangle on Axis

Area = ยฝ ร— Base ร— Height

โœ๏ธ Practice

Find area of:

A(1,2), B(4,6), C(6,3)